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ABSTRACT. – In this paper we adapt a discrete time version of the
Lucas model to a model with social protection where part of the total pro-
duction is devoted to the health expenditures. The output is produced by
labor and the technology exhibits externalities. The rate of growth of human
capital depends on the ratio of health expenditures over GDP. We give con-
ditions for which the optimal human capital sequences are increasing.
When the instantaneous utility function is isoelastic and the production
function is COBB-DOUGLAS, we prove that the optimal human capital
sequences grow at constant rate. Moreover, we prove there exists a unique
equilibrium in the sense of LUCAS [1988] or ROMER [1986].
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RÉSUMÉ. –  Dans ce papier, nous adaptons une version en temps dis-
cret du modèle de Lucas de façon à prendre en compte la protection socia-
le, financée par une partie de la production. Le travail est le seul facteur de
production et la technologie est caractérisée par des externalités. Le taux
de croissance du capital humain dépend du ratio des dépenses publiques
dans le PIB. Nous donnons les conditions sous lesquelles la trajectoire du
capital humain est croissante. Quand la fonction d’utilité indirecte est isoé-
lastique et la fonction de production est Cobb-Douglas, nous montrons
que le capital humain croît à taux constant. De plus, nous montrons qu’il
existe un solution unique au sens de LUCAS [1988] et ROMER [1986].
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1 Introduction

The role of knowledge or human capital has been proved to be crucial for
the endogenous growth theory. In ROMER [1986] knowledge accumulated by
the agents is the basic form of the capital. In LUCAS [1988], physical capital
and human capital are used as inputs in production process. But the crucial
role is the human capital accumulation. For that reason, in this paper, we
focus on the human capital. But we assume that its rate of growth depends on
the ratio of health expenditures over total output. We consider a discrete time
version model à la LUCAS where the human capital influences the production
as input and as externality. We do not introduce physical capital in this model.
Healthier workers are more productive because they are more physically and
mentally robust. Although GARY BECKER defined human capital as investment
on education, health and migration, most of empirical studies limit its defini-
tion to education investment. Hence, the provision for education requires
resources and there seems to be a trade-off too between education and health
expenditures. But the complementarity between health and education can be
underlined (ZON AND MUYSKEN [2000]). Increases in health investment leng-
then ones life span, and hence increases the return in investment education
(FUCHS [1982]). On the other hand, a higher level of education may increase
preference for health. This paper is limited to the study of impact of health
expenditures on growth. For the influence of education and training on the
human capital in a discrete time Lucas model, one can refer to GOURDEL,
HOANG-NGOC, LE VAN and MAZAMBA [2003].

We first consider the social planner problem. As in BARRO [1990], we try to
estimate the impact on economic growth of the public expenditures devoted to
health cares. Actually, we show that if the quality and/or the externality effect
of the human capital accumulation are high, then the economy will take off,
i.e., the optimal human capital sequence will grow over time. If we assume
that the instantaneous utility function is isoelastic and the production function
is COBB-DOUGLAS, then there exists a unique solution to the social planner
problem, which grows at constant rate. This one positively depends on the
externality parameter of the production function and the quality of the human
capital technology.

Second, we show that, in our model, there exists a unique equilibrium.
Equilibrium must be understood in the sense of LUCAS [1988] or ROMER,
[1986]. That is a human capital path such that, when it is used as externality,
it will coincide with the solution to the optimal problem taking it as exoge-
nously determined.

The paper is organized as follows: in Section 2, we present the model and
prove existence of the optimal solution to the social planner problem. In
Section 3, we prove existence and uniqueness of equilibria. Section 4 is
devoted to some concluding remarks.
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2 The Social Planner Problem

2.1 The Model

We consider an intertemporal model where the social planner maximizes
the utility of an infinitely lived representative consumer. The consumption
good is produced through a production function using only labour as input.
Effective labour is the sum of working hours combined with the human
capital which are devoted to the production process. More explicitly, we
assume there exists a representative worker who has h ∈ [0,+∞[ as skill
level. Effective labour is N e = h . Given h, the production level is G(h) f (h).
The term G(h) captures the external effect of the human capital. The rate of
growth of the human capital depends on the expenses for health cares St . We
assume that St = σt G(ht ) f (ht ), with 0 � σt � 1. The model is as follows :

max
+∞∑
t=0

β t u(ct )

under the constraints :

∀t � 0,0 � ct � G(ht ) f (ht )(1 − σt ),

ht+1 = ht (1 + λφ(σt )),

0 � σt � 1, h0 > 0 is given.

In the equation describing the dynamics of ht , the parameter λ measures the
quality of the human capital technology function φ .

We make the following assumptions :

H1 : The utility function u is strictly concave, strictly increasing, continu-
ously differentiable and satisfies INADA condition u′(0) = +∞ .

H2 : The production function f is COBB-DOUGLAS : f (x) = xα , 0 < α � 1.

H3 : The function G is of the form: G(x) = xγ, with γ � 0.

H4 : The function φ is strictly increasing and twice continuously differen-
tiable, φ(0) = 0, φ(1) = 1, λ > 0.

H5 : 0 < β(1 + λ)α+γ < 1.

H6 : α + γ � 1.

In Assumption H3, the parameter γ is a measure of the magnitude of the
externality effect of the human capital. With Assumption H4, λ is the
maximum rate of growth of the human capital. Assumption H5 ensures the

intertemporal utility 
+∞∑
t=0

β t u(ct ) to be well-defined. With Assumption H6 the

production function of the social planner exhibits increasing returns to scale.
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2.2 Optimal Solutions

The following proposition claims existence of optimal solutions.

PROPOSITION 1: Under assumptions H1 − H5, there exists a solution. 

PROOF: It is quite standard. �

Let ψ : [1,1 + λ] → R be defined by

ψ(x) = 1 − φ−1
(

1

λ
(x − 1)

)
where φ−1 denotes the inverse map of φ . The function ψ is clearly decrea-
sing. It is easy to check that : ψ(1) = 1 and ψ(1 + λ) = 0. The function ψ
gives the working time when the human capital rate of growth is x.

We list the properties of ψ.

(a) ψ is continuously differentiable, decreasing,

ψ(1) = 1, ψ(1 + λ) = 0, ψ′(1) = − 1

λφ′(0)
, ψ′(1 + λ) = − 1

λφ′(1)

(b) If φ is (strictly) concave, then ψ is also (strictly) concave.

Observe that the problem is now equivalent to :

max
+∞∑
t=0

β t u

(
G(ht ) f (ht )ψ

(
ht

ht+1

))
under the constraints :

∀t � 0, ht � ht+1 � ht+1(1 + λ) and h0 > 0 is given.

The following proposition states that under an additional assumption the
optimal sequence of human capital is strictly increasing. In other words, the
economy will take off, i.e., will not stick at the initial value h0 > 0.

PROPOSITION 2: Assume H1 − . . . − H5 and

H7 : λφ′(0) >

(
1

β
− 1

)
1

α + γ
.

Then any optimal human capital sequence h = (h0,h1,...,ht ,...) satisfies
h0 < h1 < ... < ht < ... .

PROOF: Since the problem is stationary, it suffices to show that for any
h0 > 0, the stationary sequence (h0,h0,...,h0,...) is not optimal.
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Let ε > 0 sufficiently small such that (1 + λφ(ε)) � (1 + λ). Define the
sequence h = (h0,h1,..,ht ,...) by ht = h0(1 + λφ(ε)) for any t � 1. The
associated sequence of consumptions cε = (c0ε,c1ε,...,ctε,...) is
c0ε = G(h0) f (h0)(1 − ε) and ctε = G(h0(1 + λφ(ε)) f (h0(1 + λφ(ε)) for
any t � 1.

The sequence of consumptions c∗ associated with (h0,h0,...,h0,...) is
c∗

t = G(h0) f (h0) for every t. We compare the utilities associated with these
sequences of consumptions. Let

�ε =
+∞∑
t=0

β t u(ct ) −
+∞∑
t=0

β t u(c∗
t ).

From the concavity of u , one gets:

�ε � u′(c0ε)[−εG(h0) f (h0)]

+ β

1 − β
u′(c1ε) (G(h0)(1 + λφ(ε)) f (h0(1 + λφ(ε)) − G(h0) f (h0)) .

It is easy to show that

lim
ε→0

�ε

ε
� u′(c∗

0)hα+γ
0

[
−1 + βλ

1 − β
(α + γ )φ′(0)

]
.

Therefore, if λφ′(0) >
1

α + γ

1 − β

β
, then �ε > 0 for ε small enough. In

other words, the stationary sequence (h0,h0,...,h0,...) is not optimal.  �

We now add assumptions in order to obtain uniqueness of optimal human
capital paths which grow at constant rate:

H8 : The utility function u has the form u(c) = cµ with 0 < µ < 1.
Moreover: (α + γ )µ − 1 < 0.

H9 : The function φ is concave.

Assumption H8 restricts the magnitude of the externality parameter γ .
From H9 the human capital technology has decreasing returns to scale.

Remark. Assumptions H4 and H9 imply φ′(0) � 1 and φ′(0) = 1 if and
only if φ(x) = x , for all x. 

In the following proposition, aside the result on the uniqueness of optimal
human capital paths with constant growth rate, we show that assumption H7
is also necessary for the economy to take off. We also show that the constant
growth rate of optimal human capital increases with the externality parameter
and the quality of the human capital technology.
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PROPOSITION 3:

1. Assume H1 − H2 − . . . − H9. Then, the optimal human capital
sequence is unique and grows at constant rate ν ∈ ]1,1 + λ[ . This rate ν
increases with λ and γ .

2. Assume H1 − H2 − H3 − H4 − H5 − H6 − H8 − H9 . If H7 does
not hold, then the optimal human capital path is the stationary sequence
(h0,h0,. . . ,h0,. . .) .

PROOF: The proof is done in two steps.

Step 1. Let V denote the value function, i.e.

V (h0) = max
+∞∑
t=0

β t h(α+γ )µ
t

[
ψ

(
ht+1

ht

)]µ

under the constraints:

∀t � 0, ht � ht+1 � ht (1 + λ), and h0 > 0 is given.

(a) The value function has the form V (h0) = Ah(α+γ )µ
0 (see e.g. LE VAN

and MORHAIM [2002]).

(b) Given h0, the optimal value of the human capital of period 1 is
h∗

1 = νh0 with ν solution to

max
{

[ψ(z)]µ + β Az(α+γ )µ : z ∈ [1,(1 + λ)]
}

(see LE VAN and DANA [2003]).

Therefore, if {ht } is an optimal sequence, we have ht = νt h0 for every t.

Step 2. From proposition 2, an optimal sequence of human capital must
satisfy ht+1 > ht for any t � 0. Since u′(0) = +∞, optimal consumptions
must be positive. Thus EULER equation holds: ∀t,

h(α+γ )µ−1
t

(
ψ

(
ht+1

ht

))µ−1

ψ′
(

ht+1

ht

)
+ (α + γ )β

(
ht+1

)(α+γ )µ−1
(
ψ

(
ht+2

ht+1

))µ

−βh(α+γ )µ−1
t+1

ht+2

ht+1

(
ψ

(
ht+2

ht+1

))µ−1

ψ′
(

ht+2

ht+1

)
= 0.

From Step 1, we know that the optimal sequence of human capital has
constant growth rate ν . From Euler equation, we get the following equation
for ν :

(1) ν1−(α+γ )µ = β

[
−(α + γ )

ψ(ν)

ψ′(ν)
+ ν

]
.



Let Hγ (ν) = ν1−(α+γ )µ,Fγ,λ(ν) = β

[
−(α + γ )

ψ(ν)

ψ′(ν)
+ ν

]
. The func-

tion Hγ is obviously increasing. For the second function, we have F ′
γ,λ(x)

= β[1 − α − γ + (α + γ )
ψ(x)

(ψ′(x))2
ψ′′(x)] < 0 . Since Fγ,λ(1) = β[(α + γ )

λφ′(0) + 1] > 1 = Hγ (1) by H7, and Fγ,λ(1 + λ) = β(1 + λ)

< Hγ (1 + λ) = (1 + λ)1−(α+γ )µ because µ < 1 and H5 holds. There thus

exists a unique solution ν ∈ ]1,1 + λ[ . We have proved that the optimal
human capital sequence is unique and grows at constant rate.

We now show that this unique solution ν increases with γ and λ. Observe

that 
∂ Hγ

∂γ
= −µHγ (ν)Log(ν) ,

∂ Fγ,λ

∂γ
= −β

ψ(ν)

ψ′
(ν)

.

We now prove that 
∂ Fγ,λ

∂λ
> 0. Recall that ψλ(x) = 1 − φ−1( 1

λ(x − 1)) .

Since φ−1 is increasing, ψ is then increasing in λ. It is easy to find that

ψ′(x) = − 1

λφ′(σ )
with σ = φ−1

(
1

λ
(x − 1)

)
. Hence, when λ increases,

then σ decreases. Consequently, since φ is concave, λφ′(σ ) increases and

hence, ψ′ increases in λ. After tedious computation, we prove that 
∂ Fγ,λ

∂λ
> 0.

Differentiating equation (1), we obtain:

∂ν

∂γ
=

µLog(ν)Hγ (ν) − β
ψ(ν)

ψ′(ν)

H ′
γ (ν) − F ′

γ,λ(ν)
> 0,

and

∂ν

∂λ
= ∂ Fγ,λ

∂λ

1

H ′
γ (ν) − F ′

γ,λ(ν)
> 0.

2. We know that there exists a solution which grows at constant rate ν . If it
is interior, then ν is determined by the intersection of the graphs of Hγ which

is increasing and of Fγ,λ which is decreasing. Assume that H7 is not satis-

fied. The graphs of Hγ and Fγ,λ have no intersection in the interval [1,1 + λ]

if λφ′(0) <

(
1

β
− 1

)
1

α + γ
or intersect only at the point (1,1) if λφ′(0)

=
(

1

β
− 1

)
1

α + γ
. We conclude that the optimal path can not be interior and

ν equals 1 or 1 + λ . But ν must differ from 1 + λ , since, in this case, the
optimal consumptions equal zero for every period. That is impossible, since
h0 > 0. Hence, the optimal path must be the stationary sequence
(h0,. . . ,h0,. . .) . �
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3 Existence and Uniqueness of
Equilibrium

We first define the concepts of equilibrium (in the sense of LUCAS or
ROMER) and competitive equilibrium.

Suppose we are given a sequence of human capital h = (h0,h1,...,ht ,...) .
Consider the following model:

max
t=+∞∑

t=0

β t u(ct )

under the constraints:

for any t, 0 � ct � G(ht ) f (ht )(1 − σt ),

ht+1 = ht (1 + λφ(σt )),

0 � σt � 1, h0 > 0 is given.

The solution h = (h0,. . . ht ,. . .) to this problem depends on h. We write
h = �(h). An equilibrium is a sequence of human capital h∗ =
(h0,h∗

1,...,h∗
t ,. . .) such that h∗ = �(h∗).

We give below conditions for which an equilibrium h∗ is strictly increasing.

PROPOSITION 4: Assume H1 − H5 and

H7b : λφ′(0) >

(
1

β
− 1

)
1

α
.

Then, any equilibrium h∗ is strictly increasing.

PROOF: Assume the contrary. We have two cases.

Case 1. The optimal sequence h∗ satisfies h∗
t = h∗

T for any t � T. Let ε
satisfy 0 < ε < 1 + λ . Define a sequence h by ht = h∗

t ,∀t � T and
ht = h∗

T + ε , for t > T . We will show that, with h∗ as externality, the inter-
temporal utility generated by h is greater than the one generated by h∗, which
contradicts the optimality of h∗.

Let

�ε =
+∞∑
t=0

β t u

(
G(h∗

t ) f (ht )ψ

(
ht+1

ht

))
−

+∞∑
t=0

β t u

(
G(h∗

t ) f (h∗
t )ψ

(
h∗

t+1

h∗
t

))
.

One gets from the concavity of u, and f:
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�ε � βT u′
(

G(h∗
T ) f (h∗

T )ψ

(
h∗

T + ε

h∗
T

))
G(h∗

T ) f (h∗
T )

[
ψ

(
h∗

T + ε

h∗
T

)
− ψ(1)

]
+

∑
t�T+1

β t u′(G(h∗
T ) f (h∗

T + ε)ψ(1))G(h∗
T ) f ′(h∗

T + ε)ε.

Thus:

lim
ε→0

�ε

ε
� βT u′(G(h∗

T ) f (h∗
T ))G(h∗

T )

[
β

1 − β
f ′(h∗

T ) − 1

λφ′(0)

f (h∗
T )

h∗
T

]
.

Replace f (x) = xα . We obtain[
β

1 − β
f ′(h∗

T ) − 1

λφ′(0)

f (h∗
T )

h∗
T

]
= (h∗

T )α−1
[

β

1 − β
α − 1

λφ′(0)

]
> 0 . 

Hence �ε > 0 for ε > 0 sufficiently small.

Case 2. The optimal sequence h∗ satisfies h∗
t = h∗

T for T � t � T + τ.

Define h by ht = h∗
t ,∀t � T +τ − 1,

h∗
T +τ < hT +τ = h∗

T +τ + ε < h∗
T +τ+1,

and hT +t = h∗
T +t for t � τ + 1. As previously, we will show that, with h∗ as

externality, the intertemporal utility generated by h is greater than the one
generated by h∗. Let

�ε =
∞∑

t=0

β t u

(
G(h∗

t ) f

(
htψ

(
ht+1

ht

)))

−
∞∑

t=0

β t u

(
G(h∗

t ) f

(
h∗

t ψ

(
h∗

t+1

h∗
t

)))
.

The technics used above again gives �ε > 0 for ε > 0 sufficiently small. �

The following proposition gives necessary and sufficient conditions for a
sequence h∗ to be an equilibrium.

PROPOSITION 5: Assume H1 − H2 − . . . − H5 − H6 − H7b − H9 and

H10 : The function (x,y) → xαψ

(
y

x

)
is concave when x � y � (1 + λ)x.

A sequence h∗ is an equilibrium starting from h0 > 0 if, and only if, it
satisfies the following conditions:

(1). Interiority:

∀t � 0, h∗
t < h∗

t+1 < (1 + λ) h∗
t , h∗

0 = h0 > 0,
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(2). Euler equation: ∀t � 0,

−u′(c∗
t )

(
h∗

t
)α+γ−1

ψ′
(

h∗
t+1

h∗
t

)

= βu′(c∗
t+1)

(
h∗

t+1
)α+γ−1

[
αψ

(
h∗

t+2

h∗
t+1

)
− h∗

t+2

h∗
t+1

ψ′
(

h∗
t+2

h∗
t+1

)]
,

(3). Transversality condition:

lim
t→∞ β t u′(c∗

t )
(
h∗

t
)α+γ−1

ψ′
(

h∗
t+1

h∗
t

)
h∗

t+1 = 0.

PROOF: 1. Let h∗ be an equilibrium. From the previous proposition, we have
h∗

t+1 > h∗
t ,∀t � 0 . Since u satisfies Inada condition u′(0) = +∞ , optimal

consumptions must be positive at each period. Hence, h∗
t+1 < (1 + λ)h∗

t , for

every t.
Since the optimal path h∗ is interior, EULER equation must hold (see e.g. LE

VAN and DANA [2003]).
We now prove that the transversality condition also holds.
Let

Vh∗(h0) = max
∞∑

t=0

β t u

((
h∗

t
)γ hα

t ψ

(
ht+1

ht

))
under the constraints

∀t � 0, ht � ht+1 � (1 + λ)ht , and h0 is given.

The function Vh∗ is concave.
Let S denote the shift operator, i.e. Sh∗ = (h∗

1,h∗
2,. . .) , ∀T , ST h∗

= (h∗
T ,h∗

t+1,. . .). From BENVENISTE and SCHEINKMAN [1979], Vh∗ is differen-
tiable and

∀t, V ′
St h∗(ht ) = u′(ct )h

∗α+γ−1
t

[
αψ

(
ht+1

ht

)
− ht+1

ht
ψ′

(
ht+1

ht

)]
where (h1,...,ht ,. . .) is the optimal sequence from h0, and ct is the associated
consumption. Since Vh∗ is concave we have:

VSt h∗(h∗
t ) = VSt h∗(h∗

t ) − VSt h∗(0) � V ′
St h∗(h∗

t )h∗
t

� u′(c∗
t )h∗α+γ−1

t

[
αψ

(
ht+1

ht

)
− ht+1

ht
ψ′

(
h∗

t+1

h∗
t

)]
h∗

t

� −u′(c∗
t )h∗α+γ−1

t
h∗

t+1

h∗
t
ψ′

(
h∗

t+1

h∗
t

)
h∗

t .
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Since β t VSt h∗(h∗
t ) → 0 when t → ∞ , we have

lim
t→∞ β t u′(c∗

t )h∗α+γ−1
t

h∗
t+1

h∗
t
ψ′

(
h∗

t+1

h∗
t

)
h∗

t = 0.

2. The proof that these conditions are sufficient is standard. �

PROPOSITION 6: Assume H1 − H2 − H3 − H4 − H5 − H6 − H9 − H10 ,
and

H7b : λφ′(0) >

(
1

β
− 1

)
1

α

H8b: u(c) = cµ with µ ∈ ]0,1[, and (α + γ ) µ − α < 0.

Then there exists a unique equilibrium h∗. It grows at constant rate ν . This
rate is smaller than the one in the social planner problem. 

PROOF: The strategy of proof is to show that

(a) the Euler equation admits a solution h∗ which grows at constant rate
ν∗ ∈ ]1,1 + λ[ . Moreover, this solution satisfies the three conditions of
the previous proposition and thus, is optimal,

(b) any other solution h to EULER equation does not satisfy the transversa-
lity condition. Hence, again from the previous proposition, it is not
optimal. From that, one concludes that there exists a unique equilibrium. 

We will show that there exists a solution h∗ to EULER equation which grows
at constant rate ν∗ . Indeed, from EULER equation, ν∗ must solve the following
equation:

−ψ′(ν)ν1−(α+γ )µ

αψ(ν) − νψ′(ν)
= β.

Let H (ν) = −ψ′(ν)ν1−(α+γ )µ

αψ(ν) − νψ′(ν)
. We obtain

H ′(ν) = A + B

where

A = −αν1−(α+γ )µψ′′(ν)ψ(ν) − α(1 − (α + γ )µ)ψ(ν)ψ′(ν)ν−(α+γ )µ(
αψ(ν) − νψ′(ν)

)2
> 0,

and

B = (α − (α + γ ) µ)ψ′(ν)2ν1−(α+γ )µ

(αψ(ν) − νψ′(ν))2
> 0
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Hence, if (α + γ ) µ − α < 0, then H ′(ν) > 0. We have H (1) =
1

λφ′(0) + 1
< β , from Assumption H7b , while H (1 + λ) =

(1 + λ)−(α+γ )µ < β from H5. Therefore, there exists a unique solution ν∗ ,
which is in the interval ]1,1 + λ[. It is easy to show that this rate is smaller
than the one in the social planner problem which solves L(ν) = β with

L(ν) =− ψ′(ν)ν1−(α+γ )µ

(α + γ )ψ(ν) − νψ′(ν)
which is increasing and smaller than H (ν) .

Let h∗ be defined by h∗
0 = h0, h∗

t+1 = ν∗h∗
t ,∀t. Obviously, it satisfies

conditions (1) and (2). It remains to show that h∗ also satisfies the transversa-

lity condition (3). Replace c∗
t by h∗(α+γ )

t ψ

(
h∗

t+1

h∗
t

)
and u′(c) by µcµ−1 .

Since

β t h∗(α+γ )µ
t ψ

(
h∗

t+1

h∗
t

)µ−1 h∗
t+1

h∗
t
ψ′

(
h∗

t+1

h∗
t

)
� h(α+γ )µ

0 ψ(ν∗)µ−1ν∗ψ′(ν∗)
[
β(1 + λ)(α+γ )µ

]t
,

and β(1 + λ)(1+γ )µ < 1, we have

lim
t→∞ β t h∗(α+γ )µ

t ψ

(
h∗

t+1

h∗
t

)µ−1 h∗
t+1

h∗
t
ψ′

(
h∗

t+1

h∗
t

)
= 0,

which is the condition (3).
The proof of the uniqueness is rather long. It will be done in three steps.

The idea is to prove that, for any solution to EULER equation different from
the one which grows at rate ν∗ , the rate of growth will converge to 1 + λ .
This property is crucial to prove that this solution does not satisfy the trans-
versality condition and, from the previous proposition, is not optimal. One
obviously concludes that the equilibrium is unique and grows at rate ν∗ .

Step 1. Let νt = ht+1

ht
and δ = 1/(1 − µ). Euler equation can be written as:

(2)
ψ(νt+1)

(αψ(νt+1) − νt+1ψ
′(νt+1))

δ
= βδ ψ(νt )

(−ν
1−(α+γ )µ
t ψ′(νt ))δ

,

or

(3) �(νt+1) = ψ(νt ),

with �(x) = ψ(x)

(αψ(x) − xψ′(x))δ
and ψ(x) = βδ ψ(x)

(−x1−(α+γ )µψ′(x))δ
.



We will show that νt+1 = I (νt ) with I ′ > 0. Indeed, tedious computations
give

�′(x) = ψ′(x)(αψ(x) − xψ′(x)) + δψ(x)((1 − α)ψ′(x) + xψ′′(x)

(ψ(x) − xψ′(x))1+δ
< 0,

and

ψ′(x) =

βδ
−ψ′(x)2x1−(α+γ )µ + δψ(x)

[
(1 − (α + γ )µ)x−(α+γ )µψ′(x) + x1−(α+γ )µψ′′(x)

]
(−x1−(1+γ )µψ′(x))1+δ

< 0.

Hence, one can write νt+1 = I (νt ) with I ′ > 0.

Observe that EULER equation (2) has only two fixed points which are ν∗ and
1 + λ. We have shown that the sequence h∗ with h∗

t = (ν∗)t h0,∀t , is an equi-
librium. The sequence h with ht = (1 + λ)t h0,∀t, is not optimal since the
associated consumptions equal zero at every date.

Step 2. Consider a non stationary sequence ν which satisfies EULER equa-
tion (2) and ∀t,1 � νt � 1 + λ . We will show that such a sequence converges
to 1 + λ . In view of the monotonicity of I , since ν1 � ν0 implies that
ν2 = I (ν1) � I (ν0) = ν1 (respectively ν1 � ν0 implies that ν2 � ν1), by an
easy induction, the sequence ν is weakly monotone. Hence it is converging to
a fixed-point of I: either ν∗ or 1 + λ .

We will show that to assume that ν converges to ν∗ leads to a contradiction.
Indeed, let εt = ν∗ − νt. First, observe that ν0 =/ ν∗ implies that for all t,
εt =/ 0. When t → +∞ , εt+1 ∼I ′(ν∗)εt . Tedious computations show that
I ′(ν∗) > 1.

In particular, for t large enough, the sequence (|εt |) is increasing, which
contradicts νt → ν∗ .

Step 3. When u(c) = cµ and ct = hγ
t

(
hα

t ψ

(
ht+1

ht

))
, the transversality

condition becomes

lim
t→∞ β t h(α+γ )µ

t ψ

(
ht+1

ht

)µ−1

ψ′
(

ht+1

ht

)
ht+1

ht
= 0.

Since 
ht+1

ht
→ 1 + λ when t → ∞, and ψ′(1 + λ) > −∞, the transversa-

lity condition is equivalent to limt→∞ β t h(α+γ )µ
t ψ

(
ht+1

ht

)µ−1

= 0.

Let us denote by νt = ht+1

ht
, εt = 1 + λ − νt and
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St = β t h(α+γ )µ
t ψ(νt )

µ−1 . When t → ∞ , then νt → 1 + λ , and εt → 0.
Consequently

ψ(νt ) = ψ(νt ) − ψ(1 + λ) ∼ −ψ′(1 + λ)(1 + λ − νt ) = −ψ′(1 + λ)εt .

It follows that St ∼ Ŝt (−ψ′(1 + λ))µ−1 where Ŝt = β t h(α+γ )µ
t (εt )

µ−1.

Hence, in order to prove that the transversality does not hold, we will prove
that limt→∞ Ŝt > 0. We have

εt+1 = (1 + λ) − νt+1 = I (1 + λ) − I (νt ) ∼ I ′(1 + λ)(1 + λ − νt )

= I ′(1 + λ)εt .

Let us now remark that I ′(1 + λ) < 1 and this imply in particular the
summability of (εt ) . Indeed, we obtain, after tedious computations:

I ′(1 + λ) =
[
β(1 + λ)(α+γ )µ

] 1
1−µ < 1.

Letting πt = Ŝt+1/Ŝt, with classical notations, we can write

πt = βν
(α+γ )µ
t (εt+1/εt )

µ−1

= β(1 + λ − εt )
(α+γ )µ(I ′(1 + λ) + (1/2)I ′′(1 + λ)εt + o(εt ))

µ−1

In view of the computation of I ′(1 + λ) ,

πt =
(

1 + λ − εt

1 + λ

)(α+γ )µ (
1 + I ′′(1 + λ)εt

2I ′(1 + λ)
+ o(εt )

)µ−1

where o(εt )/εt → 0, when t → ∞.

Therefore, the sequence (ln(πt )/εt ) converges. The summability of (εt )

implies the summability of (lnπt ) which is equivalent to the convergence of
the infinite product (π0 · · · πt ) to a positive limit. Since
Ŝt+1 = (π0π1...πt )Ŝ0, we proved that Ŝ does not tend to 0. 

4 Concluding Remarks

1. In our paper, we prove that health care helps the economy to take off if
the quality and/or the external effect of the human capital are high enough.
Assumption H7 ensures this condition.

2. We also prove that there exists a unique optimal path and it grows with a
constant rate. This one positively depends on the quality and/or the external
effect of the human capital.
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3. In LUCAS [1988] we have a competitive equilibrium with constant growth
rate. Here we obtain more. This competitive equilibrium is the unique one. It
exists under conditions (e.g. H7b , H8b) which are more stringent than those
(e.g. H7) required for the existence of increasing optimal paths. It is also
interesting to notice that Assumption H8b is in the spirit of the result in LE

VAN et alii [2002], Proposition 3: a competitive equilibrium exists if the exter-
nality effect of the human capital is not large, or, in other words, if the
production function of the social planner does not exhibit too much increasing
returns. �
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